A Computer Virus Detecting Model based on Artificial Immune and Key Code

نویسندگان

  • Zhang Li
  • Dong Z. Xin
چکیده

Existing antivirus technology depends on extracting signatures. They are inefficient on detecting diverse forms of computer viruses, especially new variants and unknown viruses. Inspired by biological immune system, a virus detection model based on artificial immune and key-signatures extraction is proposed. This model adopt TF-IDF Algorithm to extract virus ODNS from virus DNA parts on code level, and on gene level these virus ODNs are matched by slither window to form virus candidate gene library and normal candidate gene library; then distinguish these gene through negative selection algorithm to generate a detecting virus gene library; Last on the testing procedure level, use a cosine similarity algorithm to estimate the testing procedure relevant to virus. To identify most of new variants and camouflage viruses, virus polymorphism is considered. Different unsteady length genes compose a virus, and a r-adjustable match rule based on RCB r-chunks is adopted to extract virus detecting library, which can mostly present virus signatures. In order to make full use of effective information and fully taking the advantages of relevance between virus genes, in procedure phase, suspicious programs are analyzed in contrast to the detecting gene matching technique, which leads to a fairly level false and positive rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Distributed Black-Box Software Testing Using Negative Selection

In the software development process, testing is one of the most human intensive steps. Many researchers try to automate test case generation to reduce the manual labor of this step. Negative selection is a famous algorithm in the field of Artificial Immune System (AIS) and many different applications has been developed using its idea. In this paper we have designed a new algorithm based on nega...

متن کامل

Development of a Unique Biometric-based Cryptographic Key Generation with Repeatability using Brain Signals

Network security is very important when sending confidential data through the network. Cryptography is the science of hiding information, and a combination of cryptography solutions with cognitive science starts a new branch called cognitive cryptography that guarantee the confidentiality and integrity of the data. Brain signals as a biometric indicator can convert to a binary code which can be...

متن کامل

STLR: a novel danger theory based structural TLR algorithm

Artificial Immune Systems (AIS) have long been used in the field of computer security and especially in Intrusion Detection systems. Intrusion detection based on AISs falls into two main categories. The first generation of AIS is inspired from adaptive immune reactions but, the second one which is called danger theory focuses on both adaptive and innate reactions to build a more biologically-re...

متن کامل

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015